Dopamine Inhibits Arabidopsis Growth through Increased Oxidative Stress and Auxin Activity

نویسندگان

چکیده

Like some bacterial species and all animals, plants synthesize dopamine react to its exogenous applications. Despite dopamine’s widespread presence activity in plants, role plant physiology is still poorly understood. Using targeted experimentation informed by the transcriptomic response exposure, we identify three major effects of dopamine. First, show that causes hypersensitivity auxin indole-3-acetic acid enhancing activity. Second, increases oxidative stress, which can be mitigated with glutathione. Third, find downregulates iron uptake mechanisms, leading a decreased content—a possibly aimed at reducing DA-induced stress. Finally, dopamine-induced sensitivity downstream glutathione biosynthesis, indicating likely consequence Collectively, our results inhibits growth both directly indirectly promoting glutathione-biosynthesis-dependent hypersensitivity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenethyl isothiocyanate Triggers Apoptosis, Combats Oxidative Stress and Inhibits Growth of Ehrlich Ascites Carcinoma Mouse Model

The aim of this study is to investigate the antitumor activity and possible molecular mechanism of Phenethyl isothiocyanate (PEITC) against Ehrlich ascites carcinoma in-vivo and in-vitro.In-vivo, ascetic fluid volume, body weight, serum malondialdehyde (MDA) level and total antioxidant capacity (TAC) were determined using Ehrlich ascites carcinoma (EAC) bearing mice. In-vitro, MTT assay was use...

متن کامل

Phenethyl isothiocyanate Triggers Apoptosis, Combats Oxidative Stress and Inhibits Growth of Ehrlich Ascites Carcinoma Mouse Model

The aim of this study is to investigate the antitumor activity and possible molecular mechanism of Phenethyl isothiocyanate (PEITC) against Ehrlich ascites carcinoma in-vivo and in-vitro.In-vivo, ascetic fluid volume, body weight, serum malondialdehyde (MDA) level and total antioxidant capacity (TAC) were determined using Ehrlich ascites carcinoma (EAC) bearing mice. In-vitro, MTT assay was use...

متن کامل

Cesium Inhibits Plant Growth through Jasmonate Signaling in Arabidopsis thaliana

It has been suggested that cesium is absorbed from the soil through potassium uptake machineries in plants; however, not much is known about perception mechanism and downstream response. Here, we report that the jasmonate pathway is required in plant response to cesium. Jasmonate biosynthesis mutant aos and jasmonate-insensitive mutant coi1-16 show clear resistance to root growth inhibition cau...

متن کامل

Renal Dopamine Receptors, Oxidative Stress, and Hypertension

Dopamine, which is synthesized in the kidney, independent of renal nerves, plays an important role in the regulation of fluid and electrolyte balance and systemic blood pressure. Lack of any of the five dopamine receptor subtypes (D1R, D2R, D3R, D4R, and D5R) results in hypertension. D1R, D2R, and D5R have been reported to be important in the maintenance of a normal redox balance. In the kidney...

متن کامل

Lanthanum Inhibits Primary Root Growth by Repressing Auxin Carrier Abundances in Arabidopsis

Lanthanum (La) is one of rare earth elements that was used as a crop growth stimulants; however, high concentration of La markedly inhibited plant growth. Our previous study indicated that, although La induced the expression of auxin biosynthesis-related genes, it markedly repressed primary root (PR) elongation by reducing auxin accumulation in PR tips. In this study, we exhibited that La reduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stresses

سال: 2023

ISSN: ['2673-7140']

DOI: https://doi.org/10.3390/stresses3010026